SK 120 KQ

SEMITOP[®] 2

Antiparallel Thyristor Module

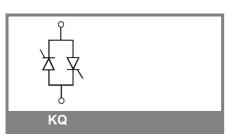
SK 120 KQ

Preliminary Data

Features

- Compact Design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

Typical Applications*

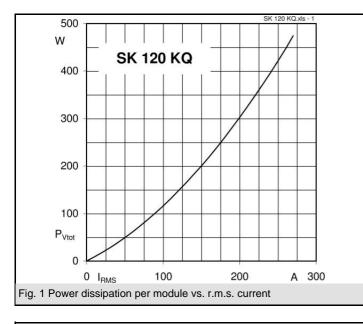

- Soft starters
- Light control (studios, theaters...) •

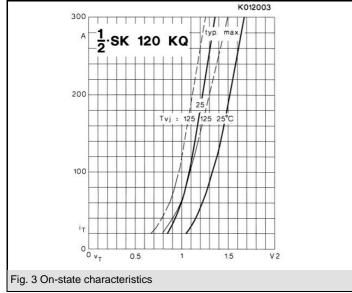
m

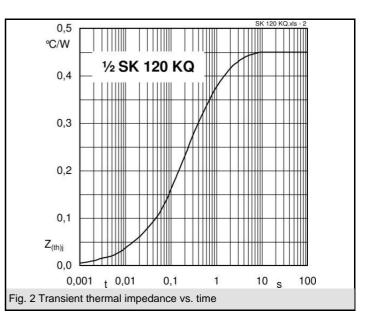
Case

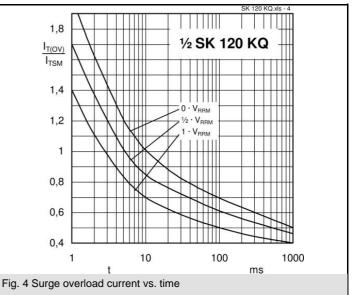
• Temperature control

V _{RSM}		V _{RRM} , V _{DRM}		I _{RMS} = 134 A (full conduction)	
V		V		(T _s = 85 °C)	
900 800		800	SK 120 KQ 08		
1300		1200		SK 120 KQ 12	
1700		1600		SK 120 KQ 16	
Symbol	Cor	ditions		Values	Units
I _{RMS}	W1C	; sin. 180° ; T _s = 100	°C	94	A
IXINO		; sin. 180° ; T _s = 85°(134	А
I		25 °C ; 10 ms	-	2000	А
ITSM		125 °C ; 10 ms		1800	A
i²t		25 °C ; 8,310 ms		20000	A ² s
	• • •	125 °C ; 8,310 ms		16200	A ² s
V _T	•1	25 °C, I _T = 300 A		max. 1,85	V
V _{T(TO)}		125 °C		max. 0,9	V
r _T		125 °C		max. 3,5	mΩ
I _{DD} ;I _{RD}		25 °C, V _{RD} =V _{RRM}		max. 1	mA
00 110		125 °C, V _{RD} =V _{RRM}		max. 20	mA
t _{gd}	T _{vi} =	25 °C, I _G = 1 A; di _G /d	t= 1 A/µs	1	μs
t _{gr}	V _D =	0,67 *V _{DRM}		2	μs
(dv/dt) _{cr}	T _{vi} =	125 °C		1000	V/µs
(di/dt) _{cr}	T _{vi} =	125 °C; f= 5060 Hz		100	A/µs
tq		125 °C; typ.		80	μs
I _H	$T_{vj} =$	25 °C; typ. / max.		100 / 200	mA
I _L	T _{vj} =	25 °C; R _G = 33 Ω; typ	o. / max.	200 / 500	mA
V _{GT}		25 °C; d.c.		min. 2	V
I _{GT}		25 °C; d.c.		min. 100	mA
V_{GD}	T _{vj} =	125 °C; d.c.		max. 0,25	V
I_{GD}	T _{vj} =	125 °C; d.c.		max. 5	mA
R _{th(j-s)}		per thyristor		0,45	K/W
U ,	sin 1	80° per thyristor		0,47	K/W
R _{th(j-s)}	cont.	per W1C		0,225	K/W
	sin 1	80° per W1C		0,235	K/W
T _{vj}				-40 +125	°C
T _{stg}				-40 +125	°C
T _{solder}		nals, 10s		260	°C
V _{isol}	a. c.	50 Hz; r.m.s.; 1 s / 1 r	min.	3000 / 2500	V~
M _s	Mour	nting torque to heatsir	nk	2,0	Nm
M _t					Nm
а					m/s²

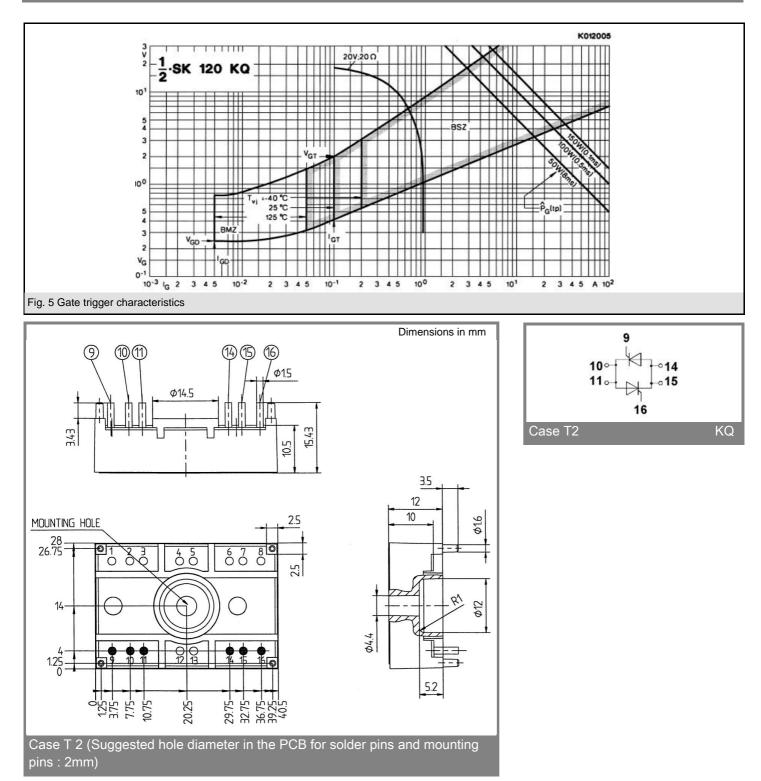

SEMITOP[®] 2


g


19


Т2

SK 120 KQ



SK 120 KQ

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.